

WJEC Chemistry GCSE

Specified Practical 4

Identifying Unknown Substances

[Methods are taken from <u>AQA Chemistry GCSE Practical handbook</u> and the <u>Royal Society of Chemistry</u>]

England Specification

Identifying Ions

Aim

Use of chemical tests to identify the ions in unknown single ionic compounds covering the ions from flame tests and sulphates.

Equipment List

- Nichrome wire mounted in handle
- Limewater
- 0.4 M dilute hydrochloric acid
- 0.1 M barium chloride solution
- 0.4 M dilute nitric acid
- 0.05 M silver nitrate solution
- 0.4 M known labelled cation salt solutions: LiCl, NaCl, KCl, CaCl2, CuCl2
- 0.4 M known labelled anion salt solutions: Na2CO3, Na2SO4, NaCl, NaBr, Nal
- 0.4 M salt solution labelled 'unknown'.

1. Flame Tests for Metal Ions

Method

- 1. Pour 1 cm³ of each known chloride solution into 5 test tubes.
- 2. Clean the nichrome wire by dipping it in dilute hydrochloric acid.
- 3. Dip the nichrome wire into solution and hold the tip in a blue Bunsen flame.
- 4. Record the colour of the flame.
- 5. Repeat for the following solutions and make sure to clean the wire after each test.
- 6. Pour 1 cm³ of the unknown salt solution into a test tube.
- 7. Dip the nichrome wire into solution and hold the tip in a blue Bunsen flame.
- 8. Record the colour of the flame, you should be able to compare results with the known chloride with the matching colour flame.

Results

- Lithium (Li⁺) crimson flame
- Sodium (Na⁺) yellow flame
- Potassium (K⁺) lilac flame
- Calcium (Ca²⁺) orange-red flame
- Copper (II) (Cu²⁺) green flame
- See diagram for other common chemicals.

ucation 🕒 🧧

Image Source: Compound Interest CC BY-NC-ND 4.0

2. Test for Carbonate lons (CO₃²-)

Method

- 1. Place a 2 cm³ of lime water in a clean test tube.
- 2. Add a little dilute hydrochloric acid to the unknown solution.
- 3. If you see bubbles, transfer the gas produced to the limewater using a delivery tube.
- 4. Repeat this process for the known sodium solutions to identify carbonate ions.

Results

- Bubbles produced and lime water goes cloudy if present.

3. Test for Sulphate lons (SO₄²⁻)

Method

- 1. Add 10 drops of dilute hydrochloric acid to the unknown solution in a test tube.
- 2. Add a 2 cm³ barium chloride solution.
- 3. Pour 1 cm³ of the known sodium solutions into separate test tubes.
- 4. Add 5 drops of dilute hydrochloric acid and then 2 cm³ of barium chloride.

Results

- White precipitate formed if present.

4. Test for the Halide lons (Cl⁻, Br⁻, l⁻)

Method

- 1. Add 10 drops of dilute nitric acid to the unknown solution in a test tube.
- 2. Add a 1 cm³ silver nitrate solution to the test tube with the unknown solution.
- 3. Pour 1cm3 of the know sodium solutions into separate test tubes.
- 4. Repeat steps 1 and 2 for which of the solutions.
- 5. Record colour of precipitate formed in each test tube.

Results

- Chloride white precipitate produced
- Bromide cream precipitate produced
- lodide yellow precipitate produced